
ON PERIODIC SOWTIONS CLOSE TO RECTILINEAR NORMAL VIBRATION MODES 

PMM Vol. 36, Ng6, 1972, pp.lOSl-1058 
L. 1. MANEVICH and Iu. V. MIKHLIN 

(Dnepropetrovsk) 
(Received September 2 8, 1971) 

Periodic solutions of essentially nonlinear systems similar to normal vibrations 

with rectilinear trajectories are investigated. Systems with homogeneous poten- 
tials are assumed to be the generating systems. Normal vibration modes of some 
nonlinear conservative systems with a finite number. of degrees of freedom, 
which are an extension of normal vibrations of linear systems have been studied 

in several papers in recent years [l, 21. Rectilinear trajectories in configura- 

tion space correspond to the known exact solutions of the normal vibration prob- 

lems. These solutions can be used as generators in determining the periodic 
motions of systems similar to those studied. The existence of solutions close 

to linear normal vibrations has been proved in the Liapunov works [3, 41 for a 
broad class of quasi-linear systems. Qualitative questions of the theory of nor- 
mal vibrations with curvilinear trajectories, as well as an approximate construc- 

tion of normal vibrations in several particular cases, have been considered in 

r5 - 71. 

1. Let us consider a conservative system described by the differential equations 

z-b- = fs (Xl, 52, . . . , 4,) (s=i,Z,...,n) (1-l) 
where f, are odd analytic functions of x1, x2,. .., 5, in a closed domain of configura- 

tion space. Keeping only terms of the least, rth power in xi, x2,..., X,, in (1. l), we 

obtain the generating homogeneous system associated with (1.1). The normal mode 

vibrations of a homogeneous system are determined by the relationships lcsO = Csxn 
(s= 1,2,..., n - l), where thr constants c, are found from the algebraic equations 

Cl1 
C.~f~:‘(C,,C,,...,C,,_,,l)=f~‘(C,,C, ,...) C,,_,,l) 

(1.2) 
(s=l,Z ,..., n.---1; 

Here and henceforth, $‘, $’ are components of lowest order in x1, x2,..., x, in the 

expansions of the functions fnr fs. Without limiting the generality, let us assume that 

a system of coordinates in which C, = 0, has been selected, which means that also 

X so = 0 (s = 1,2,..., n - 1). Let us introduce the notation x, = z, f, = f in 
this coordinate system. 

In order to construct periodic solutions of (1.1) close to the normal vibrations of a 
homogeneous system, let us initially determine the trajectories of the desired periodic 
solutions 5, = x, (x) (s = 1,2,..., n - 1). The equations to determine the trajec- 
tories can be written as follows: 

2 Ih - F (G 21 (x:), ~2 (.x1, . . . , X,,_l (X)][i+q$g-l$+ 

dx 
i-1 

f (x, x1 (x), . . . , X,,_l(X)) -+ == fs (XT Xl (X)7 * . . 9 XT,-1 (X)) (1.3) 

(” = 1, 2. . , II -- 1) 
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where h is a constant energy, and F is the potential of the system (1.1). Let us take 

the solution of (1.3) in the form of the series 
00 

xs = 2 xsk cx> (s = i,2,. . . ) n - 1) (1.4) 
k=O 

In the zero-th approximation x,a -0. As in rectilinear normal trajectories, the tra- 

jectory (1.4) should satisfy the boundary conditions 

a) Z6(0) = 0 (s = 1,2, : . . , IL - 1) 

b) On the maximum isoenergetic surface 

F (X, 51 (A-), 52 (X), . . . t ~-1 (X)) = h. (l-5) 

orthogonality conditions for the trajectories to this surface must be satisfied 
dX 

s X=,f(X,~,w9...7 ax I 
+,_I (-0 = fs (Xv 21 (Xl, . . ., ~-1 (W> (4 -6) 

where X is the amplitude value of the variable z. After X, (CC) has been determined, 

the problem reduces to integrating the equation 

2” = f (iq 51 (x), 52 (x)9 * * * ,4%-l (4) (1.7) 

The proof of the existence and the construction of a unique periodic solution are carried 

out under the following constraints on the system (1.1): 
1) The determinants are A 0 Ini- (1.8) 

A, = 6$.n (M - 1) 
I 

2+3 (1, 0,. . . ,O) i#” 

r+l 
+ G,hf(‘) (1, 0, . . . ( 0) - $-- (LO, . . . , 0) 

j 
where 6,j are the Kronecker deltas, m = 1,2,. . . 

i) Equilibrium positions are absent on the maximum isoenergetic surface. 
If r = 1, then the constraint (1.8) agrees with the condition excluding multiple 

frequencies in the generating system, which Liapunov took in the investigation of quasi- 

linear systems 151. 

2. Let us turn to the construction of an asymptotic process which will afford the 
possibility of determining the system trajectory. Let us take the solution of the homo- 

geneous system z,s = 0 as the zero-th approximation. 
Let the functions x,,, (x) (m < k) be defined. We then obtain the following kth 

approximation equation 

2 cr;; [h+ j(“) (N, 0, . . . , 0) 

r+l J: +- 1 a;;k f”’ (x, 0, . . . , 0) - 

Here 

n-1 a$’ (x, 0,. . IO) 
2 

k-l azX 

Xji; f x+- Ir-l G,l 
Nel + 2 - Np!l - 

i=l 
axj 

1=1 [=I ar 

'l-l q(') 

Nf+’ - 2 -&- (x, 0, . . . , 0) xjk = 0 
j=l 3 1 (2-l) 
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The sign 2 is extended over all solutions in positive integers of the equation 

It-l 

Hence 

q=1 j=l j=l 

C(y) = m! [ii‘ E*! (g!)E”i-i 

q=1 

Nt') zzz - W(x,x,(z), x2(z), . . . , G,_,(X)) 

N@) = f (3, q(4,xs (4, , . . , G._I 

N(3) = f, (3, x1 (cc), x2 (x), . . . , J,,J 

The solution (2.1) is sought in the form 

x,& = 5 A$‘d 
jl=l 

(2.2) 

The coefficients A$’ are related by an infinite system of linear recursion relations 

2h (r + I + 2) (r -+ 1 -k I) A$+l*9 -i- I(2 + 1) --& f”’ (I, 0, . . . ) 0) A!fi, + 

n-1 &fF) 
(E +- $)f(r) (1, o, . . . , o) A$!, - 2 +- (I,(), . . . t 0) Aj% = d”’ (2.3) 

j_=;l 3 

where the function (Ii, I”’ depends on the preceding approximations. If conditions (1.8) 

are satisfied, then all the coefficients of the series (‘2.2) are expressed uniquely in terms 

of the r2 - 1 quantities A$’ ( j = 1,2,. . . , 12 - 2; p is any fixed integer). 

The boundary conditions (1.6) corresponding to the k th approximation 

should be used to determine a.l$i’ . Because of the constraint (1. S), necessary and suffi- 

cient conditions for the coefficients i!J;’ to be represented uniquely as power series in 

X from (A.4), are satisfied. 

Taking account of all the approximations, we obtain the trajectory (1.4) which depends 

on the parameter S. I,ater, the convergence of the series (2.2) and (1.4) in some neigh- 

borhood of the ortgin will he proved. For a specified energy level of the system, the 

“amplitude” of the vibrations ,l- can be determined from (1. 5) as an analytic function 

of the energy j(. After the trajectory has been constructed, the solution of (1.7) can be 

obtained in quadratures, Since the root of (1. 5) is simple, as follows from the proposition 

(s), rhe motion of t,he conservative system with one degree of freedom (1.7) is periodic 
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in the domain F (2) < h . 

3. Let us prove the convergence of the series obtained formally. Let us consider first 

the series (2.2) by assuming that the boundedness of Z,,,, (X) has been proved for m,< 
k . (The boundedness of zSO (z) = C,x for finite values of 2: is evident). Furthermore, 

let the coefficients of (2.2) be replaced everywhere by their absolute values, and also 

replace x by 1x1. 
Since F, f, f, are analytic functions of X, ~1, x2,... , ~~-1, the estimates 

dy) 

{ ! ay.w@) (X, 0, . . . ) 0) 
k ax;lax;* . . . axa- 

f”’ (X, 0, . . . ) 0) 
n-1 I I ajl’) 

, --&X,O,...,O) 
j 

(O<B<4 (3.1) 

are then valid in the domain of definition of Cl. 1). 
Let us examine the set of coefficients A$’ (S = 1,2,. . . , n - 1, j & 2). We sup- 

pose that these coefficients are bounded. Then without limiting the generality, it can be 
assumed that the following inequalities are satisfied : 

1 A!;’ I< (&)- A (O<-‘<-J, O<a,<l) 

where A is an arbitrary, but finite, quantity exceeding the modulus of the greatest coef- 

ficient in absolute value among all the A$‘. Because of the arbitrariness in selecting 
A the quantity al can be made arbitrarily small. Let M = max {A, B}. Taking 
account of the estimates (3. l), we obtain the following inequality from (2.3) : 

I #, I -- 
1 A$’ 1 

< p;‘, 
Here 

1-i [(I - r) (2~ - 2r - 1) + (n - 1) + @,I!$ / M2 (I X I / al)‘1 

Q+1 = max al9 a’ 1+1 [(I _ r _ 1) (21 - 2r - 4) + (n - 1) + Q,lK) / W” (I x I/ up1 

Since al+l > al, the quantities A$’ \j < 1 + 1) satisfy the inequality 

Let us introduce the constants a1+2, a1+3r . . . analogously. Then 1 A$’ I< (&)“M 

(j < q and (I increases without limit). Let us consider the limit value of a, 
(3.21 

q-m 
q--1- 

[(q - r) (2q -‘2r - 1) + (n - 1) $ (I$\ / MJ (I X ) / a,$] i 

q + 1 [(q - r - 1) (2q - 2r - 4) + (n --l)+cDr)/ lcfJ (1 X 1 / CI~)~-~] ( 

If the functions z,, (z) are bounded for rn, < k , then the infinite product (3.2) con- 
verges. Making the quantity a, sufficiently small, we obtain a = limq_maq < 1, and 
the menbers of the series (2.2) decrease in a geometric progression. 

It is also necessary to prove that the coefficients ALi’ ( f < 2) are bounded. It fol- 
lows from (2 3) that all A’:’ . are linear functions of the greatest coefficients A I;:’ (.v f 
I, 11 is fixed) in absolute Glue ,~_-l 

A$’ = 2 z&i& + u, (s-11,2,...,n-1) 
i-1 
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where usi and V, are bounded quantities. Therefore, (2.4) connects the analytic func- 
tions of X and As,,, and a value X - X, exists such that quantities A,, are repre- 

sented by power series in X for IX I< IX,/ [S]. The series (2.2) converge for these 

values of X. 

Now, let us prove that the coefficients of the series (1.4) decrease in a geometric pro- 

gression as the number of the approximation k grows, Suppose that the decrease of the 

coefficients A$’ with increasing h- for j < m, is proved, and 

(j (j - 1) I A’,:’ 1, I A’,;’ It < (b)“-’ P (O<P<W O<$<U (3.3) 

Examining the relations (2.3) and (2.4) for different k, it can be shown that the ine- 
qualities are valid, particularly for A if’. bet lir = max (P, B}. Using the estimates 

(3.1) and (3.3) it can be shown that 

N$’ < p (bl)P-‘R W<R<m) (3.4) 

It has been proved earlier that the coefficients A$&)+, are bounded. Hence, values of 

the constants b, and R can be selected such that the conditions 

(m i- 1) m 1 A%+, I< (bz)‘-’ R, k s I 

would be satisfied, where bl can be made arbitrarily small if R is sufficiently large. 

Taking account of (3. l), (3,3), (3.4), we obtain the following inequality from (2.3) : 

mt~~3-11) IA!::\ I 
n (m + if I ‘q~+~ 1 

< b+r 

bl+l = max 
{ 
bl, bl 

2 ()TL + 2) (1 + 1) (1 + 2) (21 + 3) + 3 (Z + 2)2 
2 (m + 2) I? (1 + 1) (21 + 1) + 3 (1 + 1)” I 

Let us also introduce the constants bl+2, blta, . . . . We examine 

m 
b==limb,=bt g![ 

2 (I)L + 2) (Q f 1) (Q + 2) (2q + 3) + 3 (9 + 212 

Q-” 
2( IJt + 2) (q + 1) P (2P + 1) -t- 3 (‘I + 1)” 1 

The infinite products converge and we obtain the inequality b < 1 by selecting the 
quantities b, sufficiently small, It hence follows that the coefficients A$)+, decrease 
in a geometric progression as the number of the approximation k increases. 

The proof that the quantities A$’ f j = m •/- 2, m + 3,...) decrease in a geomet- 

ric progression is carried out analogously. Finally, it follows from the construction of 
the asymptotic process that the series (1,4) converge to the solution of (1.3). Therefore, 

upon compliance with the constraints (1) and (2) a unique periodic solution of (1.1) 
which possesses the properties of normal vibrations corresponds to each normal solution 
of the generating homogeneous system. 

4. To illustrate the method proposed, let us examine the free vibrations of a clamped 
filament with two lumped masses rn., and ma; gravity forces are not taken into account 

i; 

m, 
(Fig. 1). Jet I,, I,, 1, be the lengths of the 
undeformed sections of the filament, EF 

1, I, the tensile stiffness of the filament, z,, 2% 

+zz the transverse displacements of the masses 
Fig. 1 rnl and Q. 



Periodic solutions close to rectilinear normal vibration modes 993 

Let us compute the normal transverse vibrations of the filament by assuming that there 
is no preliminary tension. In this case the system is essentially nonlinear and even non- 
Linearizable. and the equations of motion are 

Let us introduce the variables 

21 
x=--r 

11 
y+ 

Assuming that I x I< 1, 1 y 1 < 13/11, let us keep only terms containing the fourth and sixth 

degrees in the expansion of the potential in powers of x and y Then the equations of 

motion are written as follows in the dimensionless form corresponding to (1.1): 

Let us determine the periodic solutions of (4.1) which are close to the normal vibrations 
of the generating homogeneous system whose potential contains only fourth powers of 
XY ?I- The relations (1.2) to determine the vibrations mode yO = Ca of the homogene- 

ous system reduce to the algebraic equation 

A rectilinear normal vibrations mode of the generating system corresponds to each real 
solution of (4.2). In order to construct trajectories of the periodic motions of the system 

(4.1) which are close to rectilinear normal modes, let us use the first approximation 
equation in the form (2.1). In the case under consideration we obtain 

l’, (J) ii;” + P2 (z) !{I’ + !% (:) !fj f- PJ (I) == 0 (4.3) 
1 

!‘I (l) = 2 (1 + inJrn~G’) it i_ (y (1 - C)’ + (%li:’ CA] (_I? -- ZJ) 

PA (.c) := - j-l + (-q$ (1 - 031 :s 

We represent the solution (4.3) in the form (2. ‘2) by satisfying the boundary conditions 
(1.6). In a numerical computation we assume 
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11 
- =: 1 

113 

12 ’ i, ) 1 ml 
-_=i 

_13 ‘2’ rn? ’ 
I(0) = x = 0.9 5’ (0) = 0 

In the zero-th approximation we determine two rectilinear normal modes (co- and anti- 

phase) corresponding to the two real roots of (4. ‘2) 

y. = 1.357 2, y,, = - 0.926 I (4.4) 

Adding rhe solution of the first approximation equation (4.3) in the form (2.2) and the 

solution of the zero-th approximation, we obtain the following expressions, respectively, 

for the vibration modes: 
y = 1.345 Z + 0.003 25 - 0.002 2’ + ‘** 

(4.5) 

y = _ 0.962 r - 0.002 ti + 0.002 2’ + *** 

Having available the vibrations mode (4.4) or (4. :I), we can reduce the problem to the 

integration of a second order nonlinear equation of the form (1.7). The dimensionless 

periods of the vibrations for the co- and antiphasal modes are T~7.42 and T sz 2.54 in 

the zero-th approximation; taking account of the zero-th and first approximations T z 

6.71 and T s 1.88. To estimate the accuracy of the asymptotic solution obtained, the 

system (4.1) was integrated numerically on an electronic digital computer. Variation 

of the initial conditions permitted extraction of two periodic solutions close to the nor- 

mal vibration modes of the generating homogeneous system. The solutions obtained on 

the computer are characterized by the following parameters : y / x z 1.349 and y / ;ZI 5 

-0.950 for 2’= 0, y’= 0 and the periods of the vibrations are T z 6.05 and T S 1.68 , 

respectively. 

A comparison of the asymptotic solutions and the solutions computed on the computer 

shows that taking account of the zero-th and first approximations assures acceptable 

accuracy of the computation. 
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